	Roll No
Total No. of Questions : 8]	[Total No. of Printed Pages : 2

EE/EX-7002-CBGS

B.E. VII Semester

Examination, June 2020

Choice Based Grading System (CBGS) Electric Drives

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

ii) All questions carry equal marks.

- 1. a) Explain the operation of a single phase semi-controlled converter fed separately excited D.C motor drive.
 - b) A 230V, 750rpm 25A dc series motor is driving at rated condition a load whose torque is proportional to speed squared. The combined resistance of armature and field is 1Ω calculate the motor terminal voltage and current for a speed of 400rpm. State the assumption made for so ling this problem.
- 2. a) Derive an expression for the average output voltage of a 3\$\phi\$semicontrolled converter.
 - b) The speed of a separately excited dc motor is controlled by means of a 3ϕ semi converter from a 3ϕ 415V, 50Hz supply the motor constant are inductance 10mH resistance 0.9Ω and armature constant 1.5V/rad/sec (Nm/A). Calculate the speed of this motor at a torque of 50Nm when the converter is fired at 40°. Neglect losses converter.

EE/EX-7002-CBGS

PTO

- 3. Explain with circuit diagram how regenerative braking is applied to
 - a) Separately excited dc motor and
 - b) Series dc motor
- 4. a) Explain multiquadrant operation of a separately excited DC motor drive fed from a dual converter in detail.
 - b) A 220V, 1500rpm, 50A separately excited DC motor with armature resistance of 0.5 Ω is fed from a circulating current dual converter with \mathfrak{P} ac source voltage of 165V (line). Determine converter firing angles for the following operating points.
 - i) Motoring operation at rated motor torque and 1000 rpm.
 - ii) Braking operation at rated motor torque and −1000 rpm.
- 5. a) Compare the operation of VSI and CSI fed Induction motor drive.
 - b) Discuss variable frequency control of IM drive. Draw the relevant speed torque characteristics and derive the mathematical expression showing the relationship of max torque and operating frequency.
- 6. a) Explain the principles of operation of VSI fed induction motor.
 - b) Show that a variable frequency induction motor drive develops at all frequencies the same torque for a given slip-speed when operating at constant flux.
- 7. a) How do you explain the operation af an induction motor speed control using rotor resistance variation?
 - b) Explain the operation of an induction motor speed control using a chopper control.
- 8. a) Explain the conventional scherbius system with that of a solid state scherbius drive.
 - b) Write short note:
 Separate and set control of synchronous motor.

EE/EX-7002-CBGS